The Evolution Of Music Essay Prompt


Music is a fundamental part of our evolution; we probably sang before we spoke in syntactically guided sentences. Song is represented across animal worlds; birds and whales produce sounds, though not always melodic to our ears, but still rich in semantically communicative functions. Song is not surprisingly tied to a vast array of semiotics that pervade nature: calling attention to oneself, expanding oneself, selling oneself, deceiving others, reaching out to others and calling on others. The creative capability so inherent in music is a unique human trait.

Music is strongly linked to motivation and to human social contact. Only a portion of people may play music, but all can, and do, at least sing or hum a tune. Music is like breathing—all pervasive. Music is a core human experience and a generative process that reflects cognitive capabilities. It is intertwined with many basic human needs and is the result of thousands of years of neurobiological development. Music, as it has evolved in humankind, allows for unique expressions of social ties and the strengthening of relational connectedness.

Underlying the behavior of what we might call a basic proclivity to sing and to express music are appetitive urges, consummatory expression, drive and satisfaction (Dewey, 1925/1989). Music, like food ingestion, is rooted in biology. Appetitive expression is the buildup of need, and consummatory experiences are its release and reward. Appetitive and consummatory musical experiences are embedded in culturally rich symbols of meaning.

Music is linked to learning, and humans have a strong pedagogical predilection. Learning not only takes place in the development of direct musical skills, but in the connections between music and emotional experiences. Darwin understood both music and consideration of emotion to be human core capabilities. Emotional systems are forms of adaptation allowing us to, for instance, note danger through the immediate detection of facial expressions.

This essay examines the biological and cognitive context for musical expression. In addition, it looks at how the predilection for music among humans has helped to foster the social connectedness so unique and vital to our species, and how our cephalic capabilities underlie music. This paper suggests that the importance of music to our socialization and well-being as a species is reflected in the cognitive and neural connections underpinning it.

The Social Functions of Music

Music is often functional because it is something that can promote human well-being by facilitating human contact, human meaning, and human imagination of possibilities. We came quite easily, one might surmise, to the cephalic state of enjoying music for itself, its expanding melodic and harmonic features, its endless diverse expression of sound, moving through space, and within our power to self-generate it (Koelsch, 2010). On the voyage that conceptualized an important idea already circulating in Victorian culture—adaptation and natural selection—Darwin spent quite a bit of time studying the phenomenon of song. He was keen to understand song as a biological feature: “It is probable that the progenitors of man, either the males or females or both sexes before acquiring the power of expressing mutual love in articulate speech, endeavored to charm each other with musical notes and rhythm (Darwin, 1871/1874).” Darwin posited that song evolved with communicative capabilities, which extended for some species (e.g., song birds and humans) with great variation.

Musical sensibility is tied to our social instincts. Darwin noted as early as 1859 that social instincts, including song, are the prelude for much of what governs our social evolution (Darwin, 1859/1958).

Darwin and the ethologist Tinbergen understood that functions can change over time and be put to novel uses (Tinbergen, 1951). Musical expression requires a wide range of such functions: respiratory control, fine motor control, and other preadaptive features. This figures into song production, an evolution tied to speech and the diversification of our communicative competence.

Musical sensibility is surely just as fundamental to the human species as, for instance, language. From a simple adaptation there emerges lively expression in almost any culture. Music is indeed generative, structurally recursive, and knotted to grouping (Diderot, 1755/1964; Spencer, 1852).

Music is a binding factor in our social milieu; it is a feature with and about us, a universal still shrouded in endless mystery. How music came into being is, like most other features in our evolution, hard to pinpoint. Evolutionary evidence over a wide range of cultural groups reveals diversity of song and instrument, yet gaps and speculative considerations remain: some cultures sing a lot, some sing less, but most do sing and perhaps Neanderthals sang more than Sapiens (Mithen, 2006). Music is typically something shared, something social; we may sing in the shower or on a solitary walk (Whitehead, 1938/1967; Rousseau, 1966), but music is most of the time social, communicative, expressive, and oriented toward others.

Music cuts across diverse cognitive capabilities and resources, including numeracy, language, and spacial perception. In the same way, music intersects with cultural boundaries, facilitating our “social self” by linking our shared experiences and intentions. Perhaps one primordial influence is the social interaction of parental attachments, which are fundamental to gaining a foothold in the social milieu, learning, and surviving; music and song are conduits for forging links across barriers, for making contact with others, and for being indoctrinated with the social milieu.

Ian Cross (Cross and Morley, 2008; Cross, 2010), has pointed out the floating, fluid expression of music. There is little doubt that the fundamental link that music provides for us is about emotion and communicative expression, in which the prediction of events is tied to diverse appraisal systems expressed in music (Meyer, 1956; Sloboda, 1985/2000; Huron, 2006). Music is fundamental to our social roots (Cross, 2010). Coordinated rituals allow us to resonate with others in chorus (Brown, 2003), for which shared intentional movements and actions are bound to one another.

Culture-bound music is a shared resource that is tied to diverse actions, including sexual function (Darwin, 1872/1998). Music permeates the way in which we coordinate with one another in rhythmic patterns, reflecting self-generative cephalic expression (Temperley, 2001; Jackendoff and Lerdahl, 2006) tied to a rich sense of diverse musical semiotics and rhythms (Peirce, 1903-1912/1977; Myers, 1905). Music is embedded in the rhythmic patterns (Myers, 1905; Sacks, 2008; Cross, 2010) of all societies. Our repertoire of expression has incurred a crucial advantage: the ability to reach others and to communicate affectively laden messages.

The social communicative bonding of the wolf chorus is one example from nature that comes to mind (Brown et al., 2004); a great chorus of rhythmic sounds in a social setting. A common theme noted by many inquirers is the social synchrony of musical sensibility (Sloboda, 1985/2000; Temperley, 2001; Huron, 2006; Cross, 2010). The motor sense is tied directly to the sounds, synchrony and movement. Sometimes the actual motor side of singing is underappreciated (Brown, 2006). Neurotransmitters, which are vital for movement, are tethered to syntax and perhaps to sound production. The communicative social affective bonding is just that: affective. This draws us together and, as a social species, remains essential to us; a chorus of expression in being with others, that fundamental feature of our life and of our evolutionary ascent. Music is indeed, as Timothy Blanning noted, a grand “triumph” of the human condition, spanning across cultures to reach the greatest of heights in the pantheon of human expression, communication, and well-being. It is in everything (Cross, 1999; Huron, 2001).

We are a species bound by evolution and diverse forms of change, both symbolic and social. Language and music are as much a part of our evolutionary development as the tool making and the cognitive skills that we traditionally focus on when we think about evolution. As social animals, we are oriented toward sundry expressions of our con-specifics that root us in the social world (Humphrey, 1976), a world of acceptance and rejection, approach and avoidance, which features objects rich with significance and meaning (Marler, 1961, 2000). Music inherently procures the detection of intention and emotion, as well as whether to approach or avoid (Juslin and Sloboda, 2001; Juslin and Vastfjall, 2008).

Social behavior is a premium cognitive adaptation, reaching greater depths in humans than in any other species. The orientation of the human child, for example, to a physical domain of objects, can appear quite similar in the performance of some tasks to the chimpanzee or orangutan in the first few years of development (Herman et al., 2007). What becomes quite evident early on in ontogeny is the link to the vastness of the social world in which the human neonate is trying to gain a foothold for action (Tomasello and Carpenter, 2007). Music is social in nature; we inherently feel the social value of reaching others in music or by moving others in song across the broad social milieu.

Social and Musical Contact and Cortical Expansion

Music is replete with social contact. In fact, its origins are in contact with others. Mothers making contact, calls to others, and rhythmic patterns with others in the social group are all ways of keeping track of others, staying in touch with others, or playing with others. Indeed, exposure to music in young children is known to promote prosocial behavior in children. Studies suggest joint singing or drumming, for instance, when controlling for diverse intellectual and personality factors, promotes prosocial behaviors (See Figure 1) (Kirschner and Tomasello, 2009, 2010).

Importantly, the greater the degree of social contact and social organization experienced by a human, the greater the trend toward cortical expansion (See Figure 2) (Dunbar, 1996, 1998, 2003; Barton, 2006; Dunbar and Shultz, 2007).

In other words, group size and social contact is linked to neocortical expansion in hominids, as is longevity. The pressure of coming into contact with others, creating alliances, and tracking them no doubt required more cortical mass (Byrne and Corp, 2004; Cheney and Seyfarth, 2007).

Interesting correlations have been suggested between neocortical size and social cognitive skills (Byrne, 1995; Reader and Laland, 2002), and this extends to musical calls. It is the also the expansion of cephalic functions that underlie the tool use that make musical instrumentalism possible. An expanded cortical/motor system with diverse cognitive capacities is no doubt pivotal to our evolutionary ascent and to the musical instruments that we developed to facilitate social interaction (Reader and Laland, 2002; Barton, 2004; Schulkin, 2007). A broad based set of findings in non-primates has also linked social complexity to larger brain size (Byrne and Corp, 2004). Technology, including musical objects, is an extension of ourselves that expands what we explore (Heelan and Schulkin, 1998; Lakoff and Johnson, 1999), facilitating plasticity of expression and long term social bonds.

Two important pathways in the central nervous system underlie how we ascertain where an object is located and what it may be (Ungerleider and Mishkin, 1982). This segmentation is tied to sound and song (Rauschecker and Scott, 2009). Moreover, neurons in the premotor region, located within the frontal lobe are contained to a large extent within Brodmann's area 6. This region is importantly involved in the direction of action (Kakei et al., 2001; Passingham, 2008) including musical expression and auditory input (Zatorre et al., 2002; Rauschecker and Scott, 2009). Moreover, diverse regions of the temporal lobe have long been linked to social perception, eye gaze, and tracking the vector of visual systems of others, and would also underlie musical expression (Rolls and Treves, 1998; Emery, 2000).

Williams Syndrome, Music and Pro-Social Behaviors

Williams Syndrome is a genetic exaggerated pro-social orientation to the world, linked to the dysregulation of oxytocin that is tied to diverse forms of pro-social behaviors (Dai et al., 2012). As an example of the interrelatedness of musicality and sociality, individuals with Williams syndrome share a common genomic marker and other common features. Their full scale IQ is usually much lower than the general population, and they have great difficulty with numbers and math. Their spatial capability is quite poor, although their linguistic capability is often good (Landau and Hoffman, 2005). Interestingly, motion processing in individuals with Williams syndrome is not perfect but remains fairly good (Reiss et al., 2005), suggesting that the ventral stream linked to motion and agency is operative. But the hypersociality associated with Williams syndrome is its most marked feature.

Often described as having “cocktail party” personalities, individuals with Williams syndrome are exceedingly cheerful, associate easily with strangers, and hyper-focus on eye contact when socially engaged. Thus, while expressing deficits in some intellectual capabilities, individuals with Williams syndrome nevertheless have intact and highly evolved human expression, including a greater liking of music, and may have much greater than average expression of perfect pitch (See Table 1).

Table 1. Various features of Autistic and Williams patients.

Children with Williams syndrome show a general decrease in brain volume (Galaburda et al., 2001). Regions of the temporal lobe are, however, actually greater in Williams syndrome than in controls (Reiss et al., 2005), while the amygdala is decreased (Galaburda et al., 2001). The amygdala of such children seems to be more reactive than controls to diverse social events (Haas et al., 2009).

Preserved musical sensibility in individuals with Williams syndrome is remarkable. Several studies have shown a greater liking of music in these individuals than age-matched controls (Don et al., 1999; Levitin et al., 2004). Williams patients more readily engage in music than controls, while autistic patients show decreased perception of emotion in music (Levitin and Bellugi, 2006; Bhatara et al., 2010). The hyper-social feature overlaps with a tendency toward hyper-musical engagement (Huron, 2001; Levitin et al., 2004). This engagement includes increased frequency in looking for music, playing music, and expressing emotional responses to music. A sensibility for and a sensitivity to sound seem to be features of these individuals (Levitin and Bellugi, 2006).

The temporal activation to music in controls vs. Williams syndrome individuals demonstrates activation of the temporal gyrus and Heschl's gyrus, while also showing a more diverse and diffuse activation that includes the amygdala and cerebellum (Levitin et al., 2003). Moreover, oxytocin, a prosocial facilitating peptide, may be elevated in Williams syndrome, and like dopamine, may be elevated when listening to music.

Individuals with Williams syndrome have also been reported to have an expanded activation of the visual cortex. In a study using functional magnetic resonance imaging (fMRI) to measure brain activity, individuals with Williams syndrome displayed greater visual cortex activation in response to music (Thompson et al., 1997). In addition, they showed diminished responses to anxiety associated with music (Dykins et al., 2005).

Cognitive/Emotional Context

Music is an affectively opulent activity, whether it is being created or consumed. Moreover, music is rich in information processing as we work to appreciate the subtleties of beat, form, melody, and harmony. The affective and intellectual complexity of the musical experience speaks to the underlying neurological structures in place to ensure human appreciation for, and creation of, novel music.

We come prepared with a cognitive toolbox that allows us to readily recognize animate objects, to sense time and space, to use language, and to discern agency in others (See Figure 3).

Figure 3. A depiction of a toolbox as a metaphor for diverse cephalic capacities (Schulkin, 2009).

Gibson (1979) suggested that there is direct cephalic access to environmental sources of information and practices in the organization of action. Thus, some questions are: what are the conditions for adaptation and what are the factors in the environment that allow for readily available resources? This view of cognitive resources is linked to the ecological/social milieu, to what is available, what is dependable, what is utilizable, as well as the ability to use and unload information into environments that expand, enable, and bolster memory function as core cognitive events (Donald, 2001; Hatten, 2004; Clarke, 2008).

Context helps to facilitate performance, musical and otherwise. Our ways of hearing and responding to music are steeped in the direct ecological exposure to and expectations about sound and meaning, as well as music and context (Clarke and Cook, 2004). It is this sense of grounding that makes features stand out so easily in music and enables the mutualism between the perception, action, and external events that are quite palpable in music sensibilities (Clarke and Cook, 2004). The events are always relative to a framework of understanding—a social context rich in practice, style and history.

As well as providing a basis for understanding musical expression, context also affords an anchor with which to develop memories and future expectancies about music (Donald, 1991; Noe, 2004). The expansion of memory facilitates the wide array of what we do, including music. The emphasis is on action and perception knotted together and coupled with musical events.

The study of music emphasizes its independence from language while tying it, like all of our cognitive functions, to a diverse set of cognitive capabilities. Moreover, common forms of mental representations underlie action and perception in musical performance and musical sensibility (Deutsch, 1999; Pfordresher, 2006). Music is not only linked to cognitive actions, but also to emotional responsivity and memory formation.

Adaptation, Evolution, and Music

From simple percusives to facile musical instruments, the tools of music represent a small leap for humankind. Diverse forms of art, tools, and probably music emerged in early Homo sapiens, and are evident in remains that date back at least 40,000 years (See Figure 4) (Mellars, 1996, 2004).

Figure 4. Bone and ivory flute fragments from the Hohle Fels and Vogelherd caves in southwestern Germany (Conard et al., 2009).

One cognitive adaptation is the capacity for the basic discernment of inanimate objects from animate objects. We represent animate objects, often giving them divine-like status, which infuses them with specific and transcendental meaning.

Musical instruments ultimately derive from this expanded cognitive approach to objects. A key artifact is something that is sometimes called a “sound tool” or “lithophone.” The oldest date back to some 40,000 years ago from sites in Europe, Asia, and Africa (Blake and Cross, 2008). Sound tools are simple stones that resonate when struck, as shown in Figure 5.

While song is the earliest form of music, the cognitive and motor capabilities necessary for the invention of musical instruments are embedded in evolutionary cognitive development over time (Cross and Morley, 2008; Cross, 2009). After all, making objects, musical, and otherwise is a cephalic extension of the world beyond ourselves (Donald, 2001).

Darwin was prepared to believe that musical expression, as a particular universal human expression, is a feature of natural selection, linked to communicative function and sexual selection (Darwin, 1871/1874). Perhaps it is tentatively tied in origins to basic functions, but surely one wants to be respectful of these simple origins without being reduced to them.

Evolutionary trends are not necessarily unidirectional, as Darwin had suggested and had penned in one of his rather unaesthetic drawings. Evolutionary trends may be more like jumps and starts, punctuated by sudden changes (Gould and Eldridge, 1977; Foley, 1996; Wood, 2000).

One view of evolution is the hypothesis that language and speech emerged between 50,000 and 100,000 years ago (Lieberman and McCarthy, 2007), and artistic representation can be traced back to 30,000–40,000 years ago (Mellars, 1996).

Music, while frequently considered an art, captures the sciences in its generative process, and draws on human expectations. The cognitive architecture, the generative processes, the diverse variation and embodiment of human meaning within almost all spheres of human expression, are rich fields of discovery for both the arts and the sciences (Dewey, 1896; Meyer, 1967; Premack, 1990; Schulkin, 2009). This development of art and music was an important evolutionary step in forming the communicative scaffolding for social interactions that have become so crucial or our species.

Art, like science, is embedded in discovery, testing, experimentation, and expansion through technique. There is no divide between the scientific and artistic. They intersect quite readily and naturally as they expand the human experience.

Action, Music, and the Brain

Given the key role that music plays in our social world, it is perhaps not surprising that music activates broad neurological systems, and that cognitive structures are in place for receiving, understanding, and producing music. Important biologically derived cognitive systems are not divorced from action or perception, but are endemic to them (Peirce, 1878; Barton, 2004; Schulkin, 2007).

Lakoff and Johnson (1999) depict relationships between perception and action, which underlie all of music, with thinking, perceiving, communicating, imagining, etc. Music is an action, but can also permeate our imagination, whether it is heard by someone, or simply imprints on neural systems. Music plays inside our heads, and as we shall see, common neural circuits underlie the action of playing and hearing music, as well as imagining music in reverberation (See Table 2) (Myers, 1905).

Table 2. Relationships that underlie all aspects of musical experience.

Music is fundamental to humans as a species. Most of the expectations we have may not be explicit, since the vast array of the cognitive systems are not conscious (Rozin, 1976); imagine playing an instrument while being explicitly conscious of all that we have to do. Impossible (Sloboda, 2000, 2005)! Cognitive systems are vastly unconscious and underlie action as well as music. The inferences, expectations, and prediction of auditory events are not particularly part of our awareness, and certainly the mechanisms are not (Helmholtz, 1873; Temperley, 2001).

A core anatomy that includes a larynx (Lieberman, 1984) tied to systems which orchestrate movement featuring statistically related acoustical harmonics and periodicity is responsible for song production. These are bound to preferences for ratios and intervals between sounds via the modulation of the larynx (Ross et al., 2007). The expansion of the larynx, along with the development of cognitive/motor capability and “recursive thinking,” underlies speech, song, music, and other social communicative cephalic expressions (Corballis, 2007). These features figure in key adaptive responses that underlie our social capability (See Figure 6).

Access to pre-adaptive systems makes a difference in diversity of expression (Rozin, 1998; Fitch, 2006; Lieberman and McCarthy, 2007). As one investigator put it: “The larynx is a source of acoustic energy, not unlike the reed in a wind instrument (Lieberman, 1984, p. 317).” Communicative capabilities are endlessly opportunistic in the exploitation of existing resources with diverse and expanding uses.

More generally, auditory perceptual systems code and structure events for music within contexts of semiotic systems, which then further expand our capabilities for song. The evolving motor cortex, united with cognition and perception, underpin the production and appreciation of song (Lieberman, 1984, 2002). Music as we know it could not have existed without cognition or the motor skills to create musical sounds.

Diverse forms of cognitive systems reflect brain evolution (Rozin, 1976, 1998) with musical sensibility distributed across a wide array of neural sites, something that Leonard Meyer, an early exponent of a cognitive/ biological perspective, appreciated.

Imagining and Music

Positron Emission Tomography (PET) measures blood flow and is used as a marker of brain activation. In studies that used neuromagnetic methods to measure cortical activity, the primary motor cortex is active both when subjects observed simple movements and when the subjects performed them (Hari et al., 1998). Of course the motor cortex is activated in a wide array of human cognitive/motor activities. Importantly, motor imagery is replete with cognitive structure and is reflected in the activation of neural circuitry (Rizzolatti and Arbib, 1998), and so auditory imagery is reflected in different regions of the brain, including anticipatory musical imagery (Rauschecker and Scott, 2009).

In another study focusing specifically on sensory events in a fMRI scanner, subjects were presented with spoken words via headphones. Then, in a second experiment the same individuals were asked to identify the words with silent lip-reading (Calvert et al., 1997). Not surprisingly, many of the same cortical regions were activated. In other words, hearing sounds is like imagining them.

Not surprisingly, hearing music activates many of the regions linked to auditory perception. However, regions of the auditory cortex are also activated when subjects are asked to imagine music or other auditory stimuli (Figure 7) (Zatorre et al., 2002; Zatorre and Halpern, 2005).

Figure 7. A neuroimaging scan revealing that even in silence the auditory cortex, pictured here in the posterior portion of the right superior temporal gyrus, is activated (Zatorre and Halpern, 2005).

Thus, despite the difficulty of knowing what people are actually imagining, one can dissociate hearing something from seeing it through diverse regions of the brain. Perhaps one is now in a better position to understand the genius of Beethoven; deaf for years, he must have heard music imaginatively to compose the way he did. Think of the cognitive complexity, the richness of the later parts of Beethoven's life. In fact, we now know that musical hallucinations are often a feature of acquired deafness such as Beethoven's (Zatorre et al., 2002). In addition, the links between audition and premotor cortex functioning mean that there is mutual activation, even in the absence of one or the other sensation (Baumann et al., 2007; Jäncke et al., 2012).

Of course, it also makes it somewhat easier to understand that the same “music to one's ears” may not be heard by one's neighbor. Beethoven is one thing, the rest of us quite another. Yet, the recruitment of cortical regions is generic.

Dopamine, Neural Circuits, and Music

Dopamine is a central organizer of drives and rewards and is tied to music sensibilities imagined, acted, and expected (Zatorre and Salimpoor, 2013). The regulation of dopamine is, for behavior, a fundamental event. It is an ancient molecule dating back millions of years in evolutionary history and plays a critical role in the motor control of the nervous systems of all vertebrates.

Dopamine levels are linked to diverse motivated behaviors (Kelley, 1999). These links have led a number of investigators to connect dopamine to reward. However, dopamine neurons are activated under a number of conditions, including duress or excitement. The pain of performance rituals through rehearsal and the expected excitement of the musical experience in context with others, for instance, activate dopamine.

Dopamine underlies the feeling of effort (practice, practice, practice, and yet more practice), and the rational prioritizing of our goals. Dopamine is active, we suggest, under both positive and negative conditions. For instance, either when one approaches something wanted or needed or when avoiding something aversive, dopamine is involved. In addition, dopamine is uniquely activated by the musical experience (Salimpoor et al., 2011).

Diverse cognitive resources are embedded in musical performance to reach out to the audience: the social milieu. Of course, musicians have to balance a sense of reward with the pain that they might be experiencing. They have to withstand short-term discomfort and set their sights on anticipatory, longer-term satisfaction (Sterling, 2004).

Music is action oriented, whether literally in the movement or the virtuosity of a Liszt, or in the controlled building up to a crescendo and release as in “The Lark Ascending” by the 20th century composer Vaughan Williams (Kennedy, 1964). Action permeates music and dopamine underlies the action of thought and the diverse cognitive systems that orchestrate the embodied expression of music.

An interesting set of studies on dopamine neurons in the brains of macaques has suggested that one function of this neurotransmitter is the prediction of rewarding events (such as hearing music) (Zatorre, 2001); dopamine neurons tend to fire more in anticipation of rewarding events.

Interestingly, using fMRI as a measure of brain activity shows that the activation of the nucleus accumbens is a predictive factor in the ratings of music (Blood et al., 1999; Menon and Levitin, 2005; Zatorre and Salimpoor, 2013). In fact, greater activation has been linked to a higher likelihood of purchasing of popular music in the United States (see Figure 8; Berns and Moore, 2012). Dopamine is not simply a neurotransmitter underlying the brain mechanisms linked to reward. It is much more complex and context-specific, such that even when dopamine is blocked, animals can still “like” things (e.g., sucrose). Indeed, dopamine is more tightly linked to the motivational component of pleasure-related events, and can be separated from the predictive reward components, while some of the endorphins are linked to the ingestion of a reward.

Figure 8. The number of albums sold with the correlating activation of the nucleus accumbens (Berns and Moore, 2012).

Musical Experience and Changing the Brain

Evidence suggests that the brains of musicians and non-musicians are different (Münte et al., 2002; Jäncke, 2009). Music shapes the cephalic encoding of information processing across different levels of the brain, from brainstem to cortex (Satoh et al., 2001; Patel, 2007; Wong et al., 2007; Cohen et al., 2011). Indeed, early musical training affects children's linguistic expression, and perhaps they are more sensitive in neonatal development (Marin, 2009) and on multisensory functioning (Stegemoller et al., 2008). Moreover, musical training enhances auditory capability more generally by impacting cortical and subcortical regions (Tramo et al., 2002; Kraus and Chandrasekaran, 2010).

In one study, for instance, gray matter differed between the two groups in the motor, visual and auditory cortex (Gaser and Schlaug, 2003). This may be due to enhanced neural connectivity. One set of studies suggests that in the corpus callosum, the main commissures between the two cortical hemispheres are greater in musicians vs. non-musicians (Schlaug et al., 1995).

In addition, intra-temporal lobe connectivity is increased in musicians with absolute pitch (Loui et al., 2010; Jäncke et al., 2012). This means that hearing tones more acutely is associated with greater inter-temporal neural connectivity. Based on this information, it would appear that several regions of the brain are altered and/or expanded by the hours of musical practice typically exercised by musicians. In fact, the actual extent of regular musical rehearsal practice is positively correlated to the degree of neural connectivity. The auditory cortex and the auditory systems more generally are intimately tied to music and hearing, including speech and song (Zatorre et al., 2002).

Music is richly organized into lexical networks of musical meaning (Peretz et al., 2009). One suggestion is that the left hemisphere, especially the superior region and surface of the temporal lobe (Heschl's gyrus), is tied to speech, and the right side is tied more to tone (Peretz et al., 2009). In two studies, for instance, the gray matter in the right cortical area was significantly greater in musicians (Keenan et al., 2001; Schneider et al., 2002; Zatorre and Halpern, 2005) than in non-musicians in several areas, including the precentral gyrus and the superior parietal cortex (See Figure 9).

Figure 9. Variations in Heschl's gyrus in the left and right hemispheres across three different groups (Schneider et al., 2002).

The premotor regions and the anticipatory cephalic organization of human action are linked throughout to musical expression. Neural action between premotor regions, auditory systems, and motor output are pervasive in musical expression and the organization of action (Zatorre, 2001; Patel, 2007; Koelsch, 2011). The dorsal premotor region in particular is knotted to metrical musical sensibilities (Zatorre, 2001). Regions of the premotor cortex may be particularly activated in experienced musicians during the execution of musical actions (See Figure 10) (Bangert et al., 2006; Baumann et al., 2007).

Figure 10. (Left) Interaction of the auditory and motor systems during musical performance, and (right) associated premotor region changes in trained vs. non-trained musicians (Zatorre et al., 2007).

The neural correlates of musical exposure and practice indicate that music affects a broad array of human functioning, and that our cortex is built to receive music, process it, and change based on this exposure. These changes occur across neurological domains such that music affects pathways of audition, speech, language, memory, motor expression, and more. These neuronal changes demonstrate the importance of music to human functioning and how broadly it impacts our structural anatomy, as well as our behavior and social functioning in the world.


Music makes clear that there is no mind-body separation. The rhythmicity of the brain, along with the development of cognitive capabilities, illustrates clear how inherent music is to our evolutionary and social success. This social link demonstrates that biological and cultural evolution are intertwined in music.

Based on this, we can predict that imagining music and listening to music would activate many of the same brain regions, which indeed it does. Additionally, music facilitates social contact and would therefore be linked to an expanding cortex, which indeed, cortical expansion it. We could further predict that music would contribute to social cooperative behaviors, and that genetic syndromes like Williams syndrome, with exaggerated social approach behaviors, would also reveal a greater propensity for music, a fundamental prosocial feature. Biologically, oxytocin, a prosocial facilitating peptide, may be elevated in Williams syndrome. Like dopamine, oxytocin may be elevated in listening to music.

Music emerged as part of communicative capability, a universal feature long noted and discussed (Juslin and Sloboda, 2001; Cross, 2009). Indeed Rousseau goes so far as to suggest “that the first language of the human race was song and many good musical people have hence imagined that man may well have learned that song from the birds (Rousseau, 1966, p.136).”

Like language, the roots of music may be in the inherent shared features of our social brain, allowing us to communicate with others. Since its development, music has filled many other important roles for humans.

Music is a fundamental part of our evolution; we probably sang before we spoke in syntactically guided sentences (Mithen, 1999, 2009; c.f. Pinker, 1994). Song is represented across animal worlds; birds and whales produce sounds, though not always melodic to our ears, but still rich in semantically communicative functions. Song is not surprisingly tied to a vast array of semiotics that pervade nature: calling attention to oneself, expanding oneself, selling oneself, deceiving others, reaching out to others, and calling on others. The creative capability so inherent in music is a unique human trait.

Ian Cross, a professor at the faculty of music at Cambridge University, has noted that facilitating the transmission of information across shared social intentional space is the pervasive social milieu; evolutionary factors are critical in understanding musical sensibility (Cross, 2009), specifying diverse social contexts in relationships. We use music because it expands our communicative social contact with one another. We also enjoy music even without obvious instrumental features. Music, like other features about us, became a worthy end for its own sake.

Music is about communication; our evolutionary ascent is the scaling of communicative competence, tracing constants of musical sensibilities to common points of origins of humanity and expansion of musical expression from this common source in prehistorical times (Grauer, 2006). But musical expression is about much more than that. Musical sensibility pervades our social space and our origins in synchrony with our interactions with others that are built on core biological propensities (Brown et al., 2004; Merker, 2005).

A series of steps set the condition for this core capability in our species. A change in the vocal apparatus, leading to a larynx of a certain size, shape, and flexibility, is but one example. A vocal capability tied to social awareness along with other cephalic capabilities, converged together in behavioral coherence.

The evolutionary record suggests that musical instruments were perhaps well expressed over 50,000 years ago in simple flutes and pipes (Cross, 1999; Morley, 2003) and were depicted in our art (e.g., on bison horn). What began as an extension of communication in a social context became something greater, which was enjoyed in itself. Our evolution is tightly bound to music and to the body as an instrument (e.g., clapping). Music, amongst other things, helps to facilitate social cooperative and coordinated behaviors (Brown, 2006).

Music permeates the brain as a core feature, from pitch and rhythm to tempo and affect (Patel, 2007). The melodies dance across our brain, memory guides them through our lives, and the tension and release, or resolution, form an outstanding aspect of the experience of many forms of music and neural processing of events (Steinbeis and Koelsch, 2007).

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


This manuscript is adapted from my recent book: Reflections on the Musical Mind (2013) Princeton University Press.


Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H. et al. (2006). Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage 30, 917–926. doi: 10.1016/j.neuroimage.2005.10.044

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Barton, R. A. (2006). Primate brain evolution: integrating comparative neurophysiological and ethological data. Evol. Anthropol. 15, 224–236. doi: 10.1002/evan.20105

CrossRef Full Text

Berns, G. S., and Moore, S. E. (2012). A neural predictor of cultural popularity. J. Consum. Psychol. 22, 154–160. doi: 10.1016/j.jcps.2011.05.001

CrossRef Full Text

Bhatara, A., Quintin, E. M., Levy, B., Bellugi, U., Fombone, E., and Levitin, D. J. (2010). Perception of emotion in musical performance in adolescents with autism spectrum disorders. Autism Res. 2, 214–225. doi: 10.1002/aur.147

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Blake, E., and Cross, I. (2008). “Flint tools as portable sound-producing objects in the upper Paleolithic context: An experimental study,” in Experiencing Archeology by Experiment, eds P. Cunningham, J. Heeb, and R. P. Paardekooper (Oxford: Oxford Books), 1–19.

Blood, A. J., Zatorre, R. J., Bermudez, P., and Evans, A. C. (1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat. Neurosci. 2, 382–387. doi: 10.1038/7299

Pubmed Abstract | Pubmed Full Text | CrossRef Full Text

Brown, S. (2003). Biomusicology, and three biological paradoxes about music. Bull. Psycol. Arts. 4, 15–28.

Brown, S. (2006). “How does music work? Towards a pragmatics of musical communication,” in

Music M401
History and Literature of Music I

Indiana UniversityJacobs School of Music

How to Write a Music History Paper

Table of Contents

  1. Select a Subject Area
  2. Get to Know Your Subject Area
  3. Build a Bibliography
  4. Select a Specific Topic
  5. Figure Out What to Say
  6. Formulate Your Thesis
  7. Plan Your Argument and Gather Evidence for Your Thesis
  8. Hand in Your Prospectus and Bibliography
  9. Draft the First Paragraph
  10. Draft the Argument
  11. Go Back to Your Sources and Revise, Revise, Revise
  12. If It Doesn't Relate to Your Thesis, Leave It OUT
  13. At the End, Answer the Killer Questions
  14. Revise, Correct, Type, and Hand It In
  15. Revise Again, Rethinking It Thoroughly in Response to Feedback and Your Own New Insights

Research Project | M401 Home

How to Write a Music History Paper
Some Suggested Subject Areas
M401: Music History Research Guide
Building a Bibliography | More Help with Research
Sample Prospectus and Bibliography | Music Citation—Chicago/Turabian Style
Research Project Style Sheet

How to Write a Music History Paper

1. Select a Subject Area

The first step in writing your paper is to find a subject area you are interested in.

For starters, look at the themes of the course listed on the syllabus. Which of these interest you most? Which might you enjoy exploring? Often the most successful papers are those that tackle a big question, like these themes, by looking at a case study. For instance, you might explore the last theme, music and its interaction with other arts, by examining how this happens in a particular place and time, such as Venice around 1600, Paris around 1680, or Vienna around 1780.

To help you consider possible topics, look around and ahead in A History of Western Music, including the timelines that are provided in every chapter; the sidebars that highlight music in its context, performance issues, composer biographies, and source readings; and the "For Further Reading" section at the end of the book. Listen to the music we will be covering this semester, or to other music from this period. Browse in the books and anthologies on reserve listed in the syllabus, such as Richard Taruskin's Oxford History of Western Music and the specialist histories and anthologies on a period or topic that interests you. Look at the list of Some Suggested Subject Areas. Select a few general areas you might be interested in pursuing, and get to know them (step 2 and the beginnings of step 3). Also, talk to your section instructor, to Prof. Burkholder, and to your classmates, and bounce ideas off of them.

Settle on one subject area as soon as you can. But don't do this too soon. Before you commit yourself to a subject, you should (1) know it well enough and (2) have gathered enough material on it to be sure that you can write a successful paper. You do not want to discover a week before the paper is due that the library has too few sources on your area.

You should have completed step 1 and started steps 2 and 3 before handing in your Preliminary Topic Idea (Assignment 1).

2. Get to Know Your Subject Area

Next, familiarize yourself with your subject area or areas. Read about them in HWM, in the New Grove Dictionary/Grove Music Online, or in other general works. Pay attention to the bibliographies of each, for these will lead you to materials that focus on your areas more specifically. Read around in the literature on your subject area or areas. Read quickly, without taking copious notes (there's time for that later). If a subject involves specific pieces of music (such as Monteverdi's operas Orfeo and Poppea ), get familiar with those pieces; if it involves a repertoire (such as troubadour songs), listen to and look at enough examples to have a sense of what the repertoire is like. Here again the anthologies on reserve may be helpful.

3. Build a Bibliography

An important part of getting to know a subject area is building a bibliography. Your bibliography is simply the list of sources you use in writing your paper. So the process of building a bibliography and the process of getting to know your subject area will happen in tandem, and you will continue to expand your bibliography as you write your paper. Hints for finding the sources you need are given in a separate webpage on Building a Bibliography. See also the M401: Music History Research Guide.

Assignment 2, the Music Resources and Research Worksheet, will help you build your bibliography.

From the start, become familiar with the format for bibliographic citations as described in Kate L. Turabian's A Manual for Writers, 8th ed., and in the Cook Music Library webpage on Music Citation—Chicago/Turabian Style. This is the format you will have to use for your bibliography in each assignment. You will save time and effort in the long run by taking time early on to become familiar with the required format for each type of item and by consistently using the correct format.

4. Select a Specific Topic

Most of the subject areas listed in the webpage Some Suggested Subject Areas are too broad to treat in a 10-to-15-page research paper. As you work, you should limit yourself to a specific topic. Topics can be limited in one or more of the following ways, or others:

  • Period of time
  • Geography or nationality
  • Genre, text, or repertoire
  • Musical technique
  • Person or group of people
  • Number of pieces covered
Select a specific topic based on your interests and the information you are finding. You should select just one thing to write about, and let go of all the other interesting ideas you have developed along the way. Write down the limits of your topic. You should be able to describe your topic in one to four sentences. If not, you may be trying to do too much in one paper.

Continue to build your bibliography.

5. Figure Out What to Say

After you have hit upon a topic and become familiar with it, you really have to start thinking. You have to figure out what to say about it.

There are two main kinds of writing in the field of music history: (1) writing that summarizes existing knowledge on a topic, like an encyclopedia article or a passage in a textbook, and (2) writing that states a thesis (a main idea) and presents an argument to support that thesis.

The research paper assignment asks you to write a paper of the second type, not the first. Here you must try to come up with something to say about your topic--and again, only one thing. THIS IS THE MOST IMPORTANT PART OF YOUR PAPER!

Notice that in a research paper you are not writing a "report." Simply rehashing what someone else has said or a bunch of data or telling us your feelings or anything else is not a research paper. You must say something. The rest of the discussion below is focused on figuring out what to say and how to argue for your thesis.

6. Formulate Your Thesis

After you've decided what you're going to say about the subject, write it out as one sentence. This is the thesis of your essay. A thesis is a one-sentence statement of your main point. It is a full sentence: for example, "Seventeenth-century Italian composers of violin sonatas often imitated the style, ornamentation, and rhetorical gestures of vocal music." It is not a sentence fragment ("The relation between violin music and vocal music in the seventeenth century"). Notice that the sentence fragment doesn't say anything, it only names the topic. The complete sentence says something, something that is specific and can be proven (or disproven).

The thesis is often the answer to some question that you have asked about the topic. If you aren't sure yet what the answer will be, but you know what question you would like to ask, start with the question, and the thesis will develop as you try to answer the question.

Of all the dozens of things you know about your subject, you may legitimately choose a thesis that addresses only one of them.

7. Plan Your Argument and Gather Evidence for Your Thesis

Try to come up with reasons why you believe your thesis. That is, try to find arguments for what you believe. When you have some, write them down in a kind of list.

At this point, go back to the books, articles, dissertations, music, and whatever else you are using as sources for your paper. Don't read every word or analyze every note. Instead, look for more reasons to believe your thesis, bits of information that can serve as evidence to support your main point. Jot these down, and note where you found them. You might also keep your eye out for reasons someone might NOT believe your thesis; you will need these later. (And if any of them persuade you, you may want to revise your thesis to account for them. Remember, you're a human being, and human beings reserve the right to change their minds.)

Using this new information, revise your list of reasons to believe your thesis. Try to make the order of the list reflect the logical order of your thought. Imagine that you are trying to convince your best friend to believe your thesis: would you start with the most convincing reasons first, or save them for last? Try to find the most persuasive order for making the case that we should all believe your thesis.

8. Hand in Your Prospectus and Bibliography

This is the point where you should be when you hand in your Prospectus and Bibliography (Assignment 3): you should have (1) selected a subject area, (2) become familiar with that subject area, (3) assembled a bibliography on that topic, (4) narrowed down to a specific topic, (5) figured out what you want to say about that topic, (6) formulated your thesis, and (7) planned your argument.

To do all this, you may actually have had to start writing the research paper itself. Some people plan everything out before they begin writing; other people only figure out what they are trying to say by trying to write about it; others do some of each. So do not assume all the steps in this process are going to go in order, and you will be all finished with one before you go on to the next one. Thinking and writing are not usually that neat. You may find it helpful to start writing early, and loop back through all these steps often, with a better sense of what you are doing each time. (That's how I write.)

9. Draft the First Paragraph

You are now ready to write the first version of the research paper (Assignment 5). This will take several more steps (steps 9 through 14 below), so begin this process as soon as you can.

Copy down your thesis. Then write another sentence that begins something like "I will demonstrate this by arguing that . . . " and then copy down your list of reasons to believe your thesis.

Believe it or not, you have just written the first paragraph of your paper! That is, your first paragraph should present your thesis and summarize your argument. Do not "introduce" or "present background" or anything else, unless it is absolutely necessary to do so before your reader is likely to understand what the thesis is saying. After you finish a preliminary draft of the whole paper, you may want to edit for style and clarity, and you may need to state briefly the problem you are trying to solve before presenting your thesis (which then gets put in your second or third paragraph), but forge on for now.

10. Draft the Argument

Take the first reason or the first step in your reasoning in your list (from step 7 above) and "develop" it. That is, tell us why it argues for your thesis, why you believe it (you may have to make another little list), and so on. Try to write a paragraph (or more) to explain what this is and to argue for its truth. Then do the same for the other items on your list. If you've done the initial list in a logical order, your whole paper will have a logical and convincing organization to it.

After having said as best you can what you wanted to say, you should consider objections that someone else might raise against what you've said. You may have noted some of these during step 7. How can you reply to these objections? Think again of trying to convince your friend. (This is known in the trade as "anticipating objections," and no argument is complete without this step.)

Your are making progress. By this point you have begun to write your paper, you should have a good idea of what you are trying to say in it (your thesis), and you should have a fairly clear sense of how you are going to argue for your thesis.

11. Go Back to Your Sources and Revise, Revise, Revise

Just as in step 7 you went back to your sources with your thesis in mind, looking for reasons to believe it, you may find it helpful to do so again. Once again, don't get bogged down in superfluous information; instead, go looking for things that will sharpen your argument. (This is a good reason to start writing early on; as soon as you know what you are trying to say, there is a lot you can skip over, instead of reading everything you find. This can save a lot of time.)

Now that your argument is developing in your own mind, you may see things you missed before. What evidence exists for each of your supporting points? What objections to your thesis might be raised by the writers of the books and articles you are reading, if they were looking over your shoulder as you write your paper? And what evidence does what you are reading or the music you are studying offer to counter any objections? If anything new turns up, incorporate it into the sections of your paper in which you develop your argument and anticipate objections.

12. If It Doesn't Relate to Your Thesis, Leave It OUT

Notice that the focus is on convincing the reader of your thesis. Leave out anything that does not help to prove your thesis. Do not tell us everything you know about the subject. Do not give a composer's biography or "analyze" a piece just because you think you have to. You don't have to do anything that doesn't provide evidence for your argument or provide context so we understand what you're talking about and why your thesis is important. If some aspect of the composer's biography or of the way the piece is made is relevant, use it as evidence for your thesis, and explain what about it supports your thesis.

One exception to this rule: if a piece of information seems to contradict your thesis, you have to deal with it. Just as a lawyer arguing a case cannot simply ignore contradictory evidence, you should not either. The point is not to distract the reader with irrelevant background material or unnecessary details.

13. At the End, Answer the Killer Questions

You are now at the end of your paper. Now, most people want to summarize their paper at the end. You have already summarized your paper in your first paragraph. Do not do it again at the end. Instead, tell us the significance of what you have said. Explain why it is important, or tell us what paper remains to be written now that this one is finished. Try to imagine that your reader asks you the killer questions "So what?" and "Who cares?" and missed the significance of what you have said. Answer those questions.

14. Revise for Style and Smoothness, Make Sure the Format is Correct, Type It Neatly, and Hand It In!!

The first version of the research paper (Assignment 5) should represent your successful achievement of all these stages. You may find yourself looping back through steps 10 and 11 again and again.

Before finalizing your paper, check the Research Paper Style Sheet to make sure that you are not making any of the common errors in style and format. Please follow the guidelines there for writing, style, and presentation, including musical examples, quotations, and appropriate citation. Make sure that you have credited everything to its source, have enclosed quoted text in quotation marks or set it off as a block quotation, and have not inadvertently plagiarized anything. See Turabian's Manual, the Music Library guide to Music Citation—Chicago/Turabian Style, or the Music Library webpages on Footnotes and Endnotes and on Bibliographic Citations to make sure that your citation style is correct for both your notes and your bibliography. (Footnote form and bibliography form differ; a citation in a footnote or endnote is punctuated as if it were a single sentence, and a bibliography citation is punctuated as if it were three or more sentences. Make sure you get each format right and understand the differences.)

When you're sure it's good to go--or you're at the deadline, whichever comes sooner—hand it in.

15. Revise Again, Rethinking It Thoroughly in Response to Feedback and Your Own New Insights

After you receive feedback on the first version from your instructors and peers, you will want to rethink most stages from stage 3 on. Do you have enough sources (stage 3), or would another source or example help your case? Do you still agree with what you were trying to say (stage 5), or do you want to modify it? Is your thesis clearly formulated (stage 6), or can you make it still clearer? (Your peer reviewers will tell you what they think your thesis is; if they don't get it right, that's a good sign that you need to state it more clearly.) Can your argument be improved (stages 7, 10, and 11)? Have you left out all irrelevant material (stage 12)? Have you shown what is significant in your work (stage 13)? Are all matters of style, format, and presentation correct (stage 14)?

Think of revising not as fiddling with a few words or sentences, or making corrections that your peers or instructors pointed out. Think of this as an opportunity to re-think and re-consider the whole project, to make the paper communicate what you want to say to your readers as effectively as possible. I always find that I feel ready to write a paper only after I have finished the first version of it, because not until then have I totally immersed myself in the topic and completely explored what I think about it and want to say about it. You will have two to three weeks to rework the paper after you receive feedback on the first version, and that gives you plenty of time to think about what you really want to say and how you want to convince your readers.

When you have made your revisions, hand in the final version of the research paper (Assignment 6). The goal here is to make the paper the best you can make it, in the amount of time you have. Then pat yourself on the back for a job well done!

We look forward to reading each stage of your project and your completed research paper. We hope you will be proud of what you have accomplished.

Research Project | M401 Home

How to Write a Music History Paper
Some Suggested Subject Areas
M401: Music History Research Guide
Building a Bibliography | More Help with Research
Sample Prospectus and Bibliography | Music Citation—Chicago/Turabian Style
Research Project Style Sheet

Last updated: 7 August 2017

This page was created by Patrick Warfield and J. Peter Burkholder,
using material contributed by Bradley Tucker and others,
and drawing in part on Michael Bybee's "Handy-Dandy Helpful Hints for Writing Philosophy Papers."

Copyright © 1997-2017 by J. Peter Burkholder

0 thoughts on “The Evolution Of Music Essay Prompt

Leave a Reply

Your email address will not be published. Required fields are marked *